
BPC User Guide

Application Development with BPC

Last Updated 25/04/2014

1

Contents

• Setup

• Writing a Program

2

Setup

3

Requirements

• Presently the BPC package is aimed for Linux
machines only

• It was tested on the Ubuntu 10.4 distribution

• The machine should have g++ installed. For
the Ubuntu distribution, “sudo apt-get install
build-essential” should suffice

• Compilation is performed using Makefiles

• Editing is not limited to any specific IDE – use
the one you like best

4

Installation

• To install the BPC core, simply decompress the
.tar.gz file from the site

• To see that it compiles properly, run the
“make” command inside the root folder

5

A New Project

• We recommend using the sample project
provided with the package as a skeleton –
simply rename the folder

• Any BPC project will use the core. To tell your
project where it is, override the Makefile
variable CORE_DIR in your Rules.mk file (or by
an argument)

6

Compiling Your Project

• If you maintain the structure proposed in the
sample application (i.e. recursive Makefiles),
you will only need to run the “make”
command in the root directory of your project

• The result is an .elf file, whose name is
defined in your Makefiles, that can be run.
Note that the core is integrated into the
project, and does not need to be run
separately.

7

Core Directories and Tests

• The core/common directory contains multiple utility classes. Feel
free to use them

• The core itself was written using test driven development.
Consequently, it comes with a bunch of unit-tests, inside the /tests
subdirectory of every main directory
– The unit-testing framework is called CxxTest. It comes with the core

(tools/cxxtest).

• These unit tests are automatically run with every compilation. If you
change the core, you might have to adjust them as well

• If you don’t care about unit-tests and just want to look at the core’s
code, ignore the “T::” prefix everywhere.

• If you want to make core contributions, make sure to write tested
code

8

Writing a Program

9

Program Structure

• A BPC program uses key classes defined in the
core. Most notably:
– BProgram: the main class. Instantiate it, register your

threads to it using the addThread method, and then
run it using the runProgram method

– BThread: the thread interface class. Any thread must
inherit from it, and implement its entryPoint method.
It provides the bSync and lastEvent methods

– Event: a class representing events, vectors of which
are passed to the bSync method. Currently, an event is
just an event code (an integer), without extra
parameters

10

bSync

• The bSync method takes as input three vectors
of events

– Vectors are defined in the core/common directory;
see in the sample application

• Just add the relevant events to the vectors

• Vectors may also be passed empty

11

IEvent

• We recommend, though this is not mandatory,
to keep an IEvent file as in the sample
application

• This file enumerates the events

• It also provides a allEvents method, which is
convenient.

– You may extend it with similar methods

12

The Core and the Threads

• At run time, each b-thread is run in a separate
thread

• They communicate with the core, also run in a
separate thread

• Communication is socket based
– See the engine/EngineConfiguration.cpp file for

determining the port.

• The system supports dynamic addition of new
threads during run time, as well as termination of
existing threads

13

